首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8476篇
  免费   728篇
  国内免费   440篇
电工技术   274篇
综合类   506篇
化学工业   3030篇
金属工艺   1294篇
机械仪表   258篇
建筑科学   92篇
矿业工程   417篇
能源动力   196篇
轻工业   232篇
水利工程   18篇
石油天然气   426篇
武器工业   62篇
无线电   437篇
一般工业技术   1358篇
冶金工业   925篇
原子能技术   59篇
自动化技术   60篇
  2024年   15篇
  2023年   97篇
  2022年   145篇
  2021年   179篇
  2020年   201篇
  2019年   168篇
  2018年   190篇
  2017年   249篇
  2016年   242篇
  2015年   254篇
  2014年   292篇
  2013年   434篇
  2012年   473篇
  2011年   492篇
  2010年   400篇
  2009年   430篇
  2008年   417篇
  2007年   637篇
  2006年   689篇
  2005年   672篇
  2004年   530篇
  2003年   454篇
  2002年   388篇
  2001年   329篇
  2000年   249篇
  1999年   226篇
  1998年   148篇
  1997年   120篇
  1996年   104篇
  1995年   86篇
  1994年   66篇
  1993年   55篇
  1992年   45篇
  1991年   37篇
  1990年   28篇
  1989年   23篇
  1988年   9篇
  1987年   6篇
  1986年   10篇
  1985年   10篇
  1984年   9篇
  1983年   8篇
  1982年   5篇
  1981年   6篇
  1980年   2篇
  1979年   4篇
  1978年   2篇
  1977年   3篇
  1975年   4篇
  1951年   1篇
排序方式: 共有9644条查询结果,搜索用时 93 毫秒
101.
综述了纳米CeO2在紫外线吸收剂、催化剂领域、抛光粉、电化学上的应用。对目前主要用于制备纳米CeO2的化学制备方法如水热法、化学沉淀法、溶胶-凝胶法、喷雾反应法等做了介绍,总结了纳米二氧化铈制备方法的研究进展,分析了其优缺点,并对其制备方法的研究方向进行展望。  相似文献   
102.
103.
通过赫尔槽试验、偏转法、安时法等多种方法,测试了国内外市场上6种品牌硫酸镍所得镀镍层外观、内应力,镀液的电流效率、分散能力、整平能力及覆盖能力等性能,并进行对比。结果显示,金柯生产硫酸镍产生的针孔少于其它品牌,配制镀液无需预处理即可进行直接生产,其瓦特镍液获取镀层内应力最小,镀液分散能力、整平能力、覆盖能力和电流效率稍优于其它品牌硫酸镍。  相似文献   
104.
Nickel is associated with reproductive toxicity. However, the reproductive toxicity of nickel nanoparticles (Ni NPs) is unclear. Our goal was to determine the association between nickel nanoparticle exposure and reproductive toxicity. According to the one-generation reproductive toxicity standard, rats were exposed to nickel nanoparticles by gavage and we selected indicators including sex hormone levels, sperm motility, histopathology, and reproductive outcome etc. Experimental results showed nickel nanoparticles increased follicle stimulating hormone (FSH) and luteinizing hormone (LH), and lowered etradiol (E2) serum levels at a dose of 15 and 45 mg/kg in female rats. Ovarian lymphocytosis, vascular dilatation and congestion, inflammatory cell infiltration, and increase in apoptotic cells were found in ovary tissues in exposure groups. For male rats, the weights decreased gradually, the ratio of epididymis weight over body weight increased, the motility of rat sperm changed, and the levels of FSH and testosterone (T) diminished. Pathological results showed the shedding of epithelial cells of raw seminiferous tubule, disordered arrangement of cells in the tube, and the appearance of cell apoptosis and death in the exposure group. At the same time, Ni NPs resulted in a change of the reproductive index and the offspring development of rats. Further research is needed to elucidate exposure to human populations and mechanism of actions.  相似文献   
105.
The use of low‐rank coal in a clean and efficient manner is a major challenge facing the current coal technology. A high‐sulfur coal with 4.5 wt% sulfur is chosen to examine the compatibility of the pristine coal and the purified contrast with a solid oxide fuel cell (SOFC) with nickel cermet anodes. Desulfurization of the pristine coal is performed by molten caustic leaching method with a removal ratio of 80%. Analyses of the physicochemical properties of coal samples indicate that the purified coal has a more favorable structure and higher Boudouard reactivity, which is suitable as a fuel for fuel cells. The assessment of electrochemical performance reveals that the purification treatment not only makes the peak power density of SOFCs improve from 115 to 221 mW cm?2 at 900°C but also extends their durability from 1.7 to 11.2 hours under a current density of 50 mA cm?2 at 850°C with a fuel availability increasing from 6.25% to 40%. The postmortem analyses show that far less deposited carbon and nickel sulfide are observed on the anode surface. The fuel‐based investigation reveals that the purified coal is a promising fuel for direct carbon fuel cells.  相似文献   
106.
Laser alloying was used for production of thick layers on surface of Nimonic 80A-alloy. For laser surface modification, three types of pre-coated pastes were applied: with amorphous boron, with amorphous boron and molybdenum as well as with amorphous boron and niobium. The microstructure, hardness and wear resistance of produced layers were studied in details. The presence of different types of borides in re-melted zone depended on the paste composition and caused an increase in hardness up to about HV 1000. The wear resistance was evaluated by calculation of mass wear intensity factor Imw and relative mass loss of specimen and counter-specimen. The wear behavior of the tested frictional pairs was determined by 3D interference microscopy, scanning electron microscopy equipped with EDS microanalyzer. The significant increase in abrasive wear resistance was observed in comparison to untreated Nimonic 80A-alloy. The lowest mass loss intensity factor was characteristic of laser-alloyed Nimonic 80A-alloy with boron and niobium (Imw=1.234 mg/(cm2·h)). Laser alloyed-layers indicated abrasive wear mechanism with clearly visible grooves. Laser alloying with boron and niobium resulted in the additional oxidative wear mechanism. In this case, EDS patterns revealed presence of oxygen on the worn surface of specimen.  相似文献   
107.
Preliminary results on a single‐crystal nickel‐based superalloy indicated that hot corrosion can occur at temperatures as low as 550°C, where liquid formation, generally believed to be responsible for Type II hot corrosion, is not predicted. Additional tests were conducted on pure‐nickel samples at 650°C and below to more clearly elucidate the mechanism of this very low‐temperature hot corrosion. Environments in dry air and O2‐(2.5, 10, 100, and 1000) ppm SO2 were studied. Based on the results obtained, a solid‐state corrosion mechanism was inferred. The mechanism relies on the formation of a previously unreported compound phase, which was identified using transmission electron microscope analysis that indicated the stoichiometry of Na2Ni2SO5. Furthermore, it was nanocrystalline in structure and metastable. It was deduced that the Na2Ni2SO5 formation was responsible for the rapid nickel transport required for the observed accelerated corrosion process. Moreover, its eventual decomposition resulted in a mixed product of porous NiO with embedded particles of Na2SO4. Application of the proposed mechanism to nickel‐based alloys is discussed.  相似文献   
108.
A series of mesoporous nickel–boron–alumina xerogel (x-NBA) catalysts with different boron/nickel molar ratio (x = 0–1) were prepared by an epoxide-driven sol–gel method. The effect of boron/nickel molar ratio on the catalytic activities and physicochemical properties of nickel–boron–alumina xerogel catalysts was investigated in the steam reforming of liquefied natural gas (LNG). All the mesoporous x-NBA catalysts showed similar surface area. Introduction of boron increased interaction between nickel and support. In addition, introduction of boron into x-NBA catalysts reduced methane activation energy and increased nickel surface area. Promotion of boron had a positive effect on the catalytic activity due to the increase of adsorbed methane and nickel surface area. The amount of adsorbed methane and nickel surface area exhibited volcano-shaped trends with respect to boron/nickel molar ratio. LNG conversion and hydrogen yield increased with increasing the amount of adsorbed methane and with increasing nickel surface area. Among the catalysts, 0.3-NBA, which retained the largest amount of adsorbed methane and the highest nickel surface area, showed the best catalytic performance. It was also revealed that x-NBA catalysts showed strong coke resistance during the steam reforming reaction.  相似文献   
109.
110.
Abstract

Nanoscale Ni – Si thin films are widely used in commercial microelectronic devices because of their promising electrical properties as well as their chemical stability. However, their application in corrosive environment has not been frequently addressed in the literature. In this study, amorphous Ni0.66Si0.33, Ni0.40Si0.60, and Ni0.20Si0.80 thin films are prepared on AISI 304L stainless steel by means of ion-beam sputter (IBS) deposition and their corrosion behaviour is studied using potentiodynamic polarisation measurements. The electrochemical measurements were conducted in 0.05M HCl solution at room temperature. By means of optical interferometer, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), the surface morphology and chemical composition of the thin films were examined before and after the electrochemical measurement. The evaluated results showed that the Ni–Si thin films may exhibit improved corrosion resistance over the 304L substrate provided that Si content is high enough to facilitate the formation of a Si-rich passive film.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号